Energetics of Metal-Ligand Multiple Bonds. Thermochemistry of Tantalum(V) Alkylidene Formation

Lubin Luo, Liting Li, and Tobin J. Marks*

Department of Chemistry Northwestern University Evanston, Illinois 60208-3113

Received April 28, 1997

Alkylidene complexes of early transition metals¹ display a rich and diverse chemistry which includes a central catalytic role in olefin metathesis processes.^{1,2} However, despite the broad existing synthetic/structural/reactivity information base, little is known about the energetics of the formal M=C bonding or of the driving forces for the transformations such complexes undergo. We report here the first experimental analysis of metal alkylidene bonding energetics in a Ta(V), complex which reveals a *very large Ta=C bond enthalpy* as well as thermochemical insight into several important alkylidene reaction patterns.³

 α -Elimination processes represent a common route to transition metal alkylidenes,¹ and Xue recently showed in a detailed mechanistic study that eq 1 proceeds cleanly and unimolecularly to afford alkylidene complex **2**.⁴ The driving force for alky-

lidene formation is not immediately obvious since C—H bonds are both made and broken, and the formation of the Ta=C bond requires the breaking of two Ta—C single bonds. Under firstorder kinetics, the heat evolved in eq 1 per solution volume in time interval $t_i - t_{i+1}$ can be expressed in terms of the change of [1],

$$C_i = C_0 \mathrm{e}^{-k_1 t_i} \tag{2}$$

$$H_i - H_{i+1} = \Delta H^{\text{rxn}}(C_i - C_{i+1}) = \Delta H^{\text{rxn}}C_0(e^{-k_1t_i} - e^{-k_1t_{i+1}})$$
(3)

$$\Delta H^{\rm rxn} = (H_i - H_{i+1}) [C_{\rm o}({\rm e}^{-k_1 t_i} - {\rm e}^{-k_1 t_{i+1}})]^{-1}$$
(4)

 $C_i - C_{i+1}$, where k_1 is known⁴ (eqs 2–4). Monitoring the **1** \rightarrow **2** conversion (which begins upon dissolution of solid samples of **1**) at 25.000 \pm 0.001 °C in a rigorously anaerobic, isoperibol

solution calorimeter⁵ under conditions⁴ in which **2** undergoes negligible dimerization, yields $\Delta H^{\text{rxn}} = -15.8(4)$ kcal/mol.⁶ Clearly, the **1** \rightarrow **2** + SiMe₄ conversion is significantly exothermic and eq 1 is not driven by entropic factors alone (1 particle \rightarrow 2 particles).⁷

More detailed examination of the bonding energetic changes in eq 1 can be achieved via a stepwise analysis (eqs 5-8) invoking several reasonable assumptions. It is assumed that

$$(\text{RCH}_2)_3\text{Ta}(\text{CH}_2\text{R})_2 \rightarrow (\text{RCH}_2)_3\text{Ta} + 2 \bullet \text{CH}_2\text{R}$$
$$2\text{D}(\text{Ta}-\text{C}) (5)$$

$$2 \bullet CH_2 R \rightarrow CH_3 R + :CHR$$

 $D(H \bullet CHR) - D(H - CH_2 R)$ (6)

$$(RCH_2)_3Ta + :CHR \rightarrow (RCH_2)_3Ta = CHR - D(Ta = C)$$
(7)

$$(\text{RCH}_2)_3\text{Ta}(\text{CH}_2\text{R})_2 \rightarrow (\text{RCH}_2)_3\text{Ta}=\text{CHR} + \text{CH}_3\text{R} \quad \Delta H^{\text{rxn}}$$
(8)

reorganization of the (RCH₂)₃Ta framework makes a minor contribution to the energetics over and above what is incorporated in the derived D(Ta–C) parameters (vide infra). Second, it is assumed that $D(H-\bullet CHR) \approx D(H-CH_2R)$, which is supported by data for :CH₂ and •CH₃.^{8,9} Estimation of \overline{D} [Ta(CH₂SiMe₃)₅] and, to assess possible destabilizing interligand repulsions in driving eq 1, of D_1 [Ta(CH₂SiMe₃)₅] was achieved by iodinolytic solution titration calorimetry in toluene (eqs 9 and 10) in which TaI₅ (soluble in toluene) was identified after isolation by X-ray diffraction, (Me₃SiCH₂)₄TaI by ¹H and ¹³C NMR, and Me₃SiCH₂I by ¹H and ¹³C NMR and by GC-MS.^{5,6} Using \overline{D} (TaI₅)¹⁰ as an anchor point, using standard

$$Ta(CH_2R)_5 + 5I_2 \rightarrow TaI_5 + 5ICH_2R \tag{9}$$

$$Ta(CH_2R)_5 + I_2 \rightarrow (RCH_2)_4 TaI + ICH_2R \quad (10)$$

tabulated thermochemical data,¹¹ and reasonably assuming^{5d,12} that $D_1(\text{TaI}_5) \approx \overline{D}_1(\text{TaI}_5)$ yields $D_1[\text{Ta}(\text{CH}_2\text{SiMe}_3)_5] = 44(1)$ kcal/mol and $\overline{D}[\text{Ta}(\text{CH}_2\text{SiMe}_3)_5] = 67(1)$ kcal/mol. The former result suggests non-negligible crowding in **1** while the latter is

^{(1) (}a) Wigley, D. E.; Gray, S. D. In *Comprehensive Organometallic Chemistry* II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Oxford, U.K., 1995; Vol. 5, pp 83–89. (b) Schrock, R. R. *Pure Appl. Chem.* **1994**, 66, 1447–1454. (c) Feldman, J.; Schrock, R. R. *Prog. Inorg. Chem.* **1991**, *39*, 2–74.

^{(2) (}a) Ofstead, E. A.; Wagener, K. B. In New Methods for Polymer Synthesis; Mijs, W. J., Ed.; Plenum Press: New York, 1992; Chapter 8.
(b) Novak, B. M.; Grubbs, R. H. Encycl. Polym. Sci. Eng 1990, Suppl. Vol., 420–429. (c) Ivin, K. J. Encycl. Polym. Sci. Eng. 1987, 9, 634–668.
(d) Grubbs, R. H. In Comprehensive Organometallic Chemistry; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K., 1982; Vol. 8, pp 499–551.

⁽³⁾ Communicated in part: Luo, L.; Li, L.; Marks, T. J. *Abstracts of Papers*; 213th National Meeting of the American Chemical Society; San Francisco, CA, April 1997; American Chemical Society: Washington, DC, 1997: INOR 673.

⁽⁴⁾ Li, L.; Hung, M.; Xue, Z. J. Am. Chem. Soc. 1995, 117, 12746-12750.

^{(5) (}a) King, W. A.; DiBella, S.; Lanza, G.; Khan, K.; Duncalf, D. J.; Cloke, F. G. N.; Fragala, I. L.; Marks, T. J. J. Am. Chem. Soc. **1996**, 118, 627–635. (b) Nolan, S. P.; Porchia, M.; Marks, T. J. Organometallics **1991**, 10, 1450–1457. (c) Nolan, S. P.; Stern, D.; Marks, T. J. J. Am. Chem. Soc. **1989**, 111, 7844–7853. (d) Schock, L. E.; Marks, T. J. J. Am. Chem. Soc. **1988**, 110, 7701–7715.

⁽⁶⁾ See the Supporting Information for experimental details.

 ^{(7) (}a) Smith, G. M.; Carpenter, J. D.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 6805–6807. (b) Menger, F. M.; Venkataram, U. V. J. Am. Chem. Soc. 1985, 107, 4706–4709 and references therein. (c) Page, M. I. In The Chemistry of Enzyme Action; Page, M. I., Ed.; Elsevier: New York, 1984; pp 1–54.

¹¹ (8) (a) From tabulated ΔH_f^c values for :CH₂^{8b,c} and •CH₃, ^{8d} D(H–CH₃) and D(H–•CH₂), are estimated to be 104 and 103.7 kcal/mol, respectively. (b) Benson, S. W. *Thermochemical Kinetics*, 2nd ed.; John Wiley and Sons: New York, 1976; Appendix Tables A.11 and A.12. (c) Isaacs, N. S. *Physical Organic Chemistry*; Longmans: Essex, U.K., 1987; pp 37–39. (d) Griller, D.; Kanabus-Kaminska, J. M.; Maccoll, A. *J. Mol. Struct.* **1988**, 163, 125–131.

^{(9) (}a) This assumption is invalid in cases where the carbene has a singlet ground state.^{9b,c} Calculations on H₃SiCH at the 6-31G**/MP2 and DZP/MP2 levels indicate that the triplet state lies below the singlet by 27.9 and 26.3 kcal/mol, respectively. At the AUG-cc-TVZ level with an MP4 level of correlation, the difference is 19.5 kcal/mol. (b) Chen, P. Acc. Chem. Res. **1992**, 25, 385–391. (c) Clauberg, H.; Minsek, D.; Chen, P. J. Am. Chem. Soc. **1992**, 114, 99–107.

^{(10) (}a) Calculated from experimental $\Delta H_{\rm f}^{\rm o}$ data.^{10b} (b)Schafer, H.; Heine, H. Z. *Anorg. Allg. Chem.* **1967**, *352*, 258–264. (c) $\Delta H_{\rm solution}$ of TaI₅ is estimated as described in ref 5a.

Table 1. Experimental Thermochemical Data

eq	$\Delta H^{\rm rxn}$ (kcal/mol)	D(I–I) (kcal/mol) ^a	D(C-I) (kcal/mol) ^b	D (Ta−I) (kcal/mol)	D(Ta-C) or D(Ta=C) (kcal/mol)
1 9 10	-15.8(4) -75.1(6) -38(1)	36.5 36.5	55 55	62.9 62.9	D(Ta=C) = 126(4) $\overline{D}(Ta-C) = 67(1)$ $D_1(Ta-C) = 44(1)$

^{*a*} From ref 10d. ^{*b*} From refs 10a-c.

in favorable agreement with the reported $\overline{D}(\text{TaMe}_5) = 62(2)$ kcal/mol.¹³ Using $2D(\text{Ta}-\text{C}) \approx D_1[\text{Ta}(\text{CH}_2\text{SiMe}_3)_5] + \overline{D}[\text{Ta}(\text{CH}_2\text{SiMe}_3)_5]$ in eq 5¹⁴ then yields D(Ta=C) = 126(4)kcal/mol, which is very large and implicitly incorporates any α -CH agostic interaction^{1,15} (apparent in the NMR spectroscopic data for $2^{4,15c}$). Thermochemical data are compiled in Table 1.

Although the presently observed stability of Ta alkylidene bonding might at first appear incompatible with reaction patterns such as metallacyclobutane formation in metathesis/ROMP/ ADMET processes,^{1,2} thermochemical analysis¹⁶ (incorporating ring strain¹⁷) reveals that for ethylene and acetylene addition, Ta=C bond breaking is almost exactly compensated by Ta-C and C-C bond formation (eqs 11 and 12). That complex **2** is

(12) (a) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. *Inorganic Chemistry*; Harper Collins: New York, 1993; pp A25–A33. (b) Chase, M. W.; Davies, C. A.; Downey, J. R.; Feurir, D. J.; McDonald, R. A.; Syverund, A. N. J. *Phys. Chem. Ref. Data* **1985**, *14*, Supplement 1.

(13) Adedeji, F. A.; Connor, J. A.; Škinner, H. A. J. Chem. Soc., Chem. Commun. **1976**, 159–160.

(14) Assuming $2D(Ta-C) = 2\overline{D}[Ta(CH_2SiMe_3)_5]$ yields a slightly larger D(Ta=C), but fails to account fully for the apparent weakness of the first Ta-C σ bond.

(15) (a) Schultz, A. J.; Brown, R. K.; Williams, J. A.; Schrock, R. R. J. *Am. Chem. Soc.* **1981**, *103*, 169–176. (b) Goddard, R. J.; Hoffmann, R.; Jemmis, E. D. J. Am. Chem. Soc. **1980**, *102*, 7667–7676. (c) ${}^{1}J_{C-H} = 99.6$ Hz.

(16) Thermochemical parameters from ref 10 and: (a) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. *Thermochemical Data of Organic Compounds*, 2nd ed.; Chapman and Hall: London, 1986; Appendix Tables 1 and 3. (b) Benson, S. W. J. Chem. Educ. **1965**, 42, 502–518. (c) Martinho Simoes, J. A.; Beauchamp, J. L. Chem. Rev. **1990**, 90, 629–688.

not an anomalous alkylidene complex and that eq 11 is doubtless more exothermic for strained olefins is confirmed by our observation that **2** mediates the rapid ROMP polymerization of norbornene (*trans:cis* product linkage ratio = 1:2).¹⁸ The present data also implicate metal oxo/oxide ligand formation as the principal driving force for metathesis termination by carbonyl reagents (eqs 13 and 14).^{1,2,19}

These results demonstrate not only that early transition metal alkylidene-forming α -elimination and other processes are driven by the strong metal-alkylidene bonds that are formed but also that the metal-ligand bonding energetics are ideally poised for alkylidene \Rightarrow metallacycle catalytic cycles with minimal enthalpic excursions.

Acknowledgment. This research was supported by the National Science Foundation under grant CHE-961889. We thank Prof. J. A. Berson for making us aware of ref 9b and Dr. I. D. L. Albert for the quantum chemical calculations.

Supporting Information Available: Experimental details of calorimetry and product characterization (2 pages) See any current masthead page for ordering and Internet access instructions.

JA971326J

(17) (a) For metallacyclobutanes, see : Bruno, J. W.; Marks, T. J.; Morss, L. R. *J. Am. Chem. Soc.* **1983**, *105*, 6824–6832. (b) For organic fragments, ref 8c, pp 282–291.

(18) Koo, K.; Luo, L.; Li, L.; Marks, T. J., unpublished observations. Polymer ¹H NMR spectrum identical to that in: Petasis, N. A.; Fu, D.-K. J. Am. Chem. Soc. **1993**, 115, 7208–7214.

J. Am. Chem. Soc. **1993**, *115*, 7208–7214. (19) (a) We take $D(Ta=O) = D[(MeCp)_2W=O] = 141 \text{ kcal/mol.}^{196}$ (b) Luo, L.; Lanza, G.; Fragala, I. L.; Stern, C. L.; Marks, T. J., submitted for publication.

^{(11) (}a) Since $D(CH_3CH_2-H) \approx D(Me_3SiCH_2-H)$,^{11b,c} we take $D(Me_3-SiCH_2-I) \approx D(CH_3CH_2-I)$.^{8d,11b} (b) McMillen, D. F.; Golden, D. M. Ann. Rev. Phys. Chem. **1982**, *33*, 493–532. (c) Walsh, R. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1989; Chapter 5. (d) Landolt-Bornstein; Hellwege, K. H., Ed. in Chief; Springer-Verlag: Berlin 1976; Vol. 2, Chapter 3.2, Group IV.